
Les lois des probabilités
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Les lois des probabilités

 Les lois des probabilités décrivent les valeurs
que les probabilités peuvent prendre ainsi que la
façon avec laquelle elles se combinent.

Ô Premièrement, les lois concernant les
événements qui ne sont pas conditionnés à
aucune autre information ;

Ô Deuxièmement, les lois relatant des événements
qui sont conditionnés à d’autres informations.



Première loi des probabilités

Ô A partir de ça et en utilisant la deuxième loi, on déduit
que si une proposition est fausse, elle a une probabilité
égale à 0.

Ô Cet te  lo i  e s t  également connue sous le nom de
‘convexity rule’.

Ô Cette loi se réfère à un seul événement. Par contre, les
prochaines deux lois  relatent de combinaisons
d’événements.
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Première loi des probabilités (événements dépendants)

Ô la valeur de l’événement est conditionnée (|) aux données
qui nous sont connues (‘background information’) ;

Ô l’estimation des fréquences alléliques d’un profil ADN est
conditionnée à l’information sur l’ethnie de l’agresseur ;

Ô l’estimation de la distribution de l’indice de réfraction des
verre est conditionnée au type de verre à l ’origine des
fragments retrouvés.
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Deuxième loi des probabilités

Ô Si R et S sont des événements mutuellement exclusifs, la
probabilité ‘R ou S’ (‘disjunction’) est égale à la somme
des probabilités de R et de S.

Ô Imaginons de choisir une carte dans un jeu avec R définit
comme étant le choix de ‘trèfle’ et S le choix de ‘pique’.

Ô P(R) = 1/4
Ô P(S) = 1/4
Ô P(R et S) = 0 (en effet, une carte peut être trèfle, pique,

aucun des deux, mais pas les deux à la fois).
Ô Par conséquent, la probabilité que la carte choisie est de

couleur noire, P(R ou S) est 1/2 : P(R) + P(S).
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Deuxième loi des probabilités

Ô Imaginons de lancer un dé ; la probabilité qu’un numéro (n’importe
lequel) sort est 1/6.

Ô Si on se pose la question : quelle est la probabilité qu’un numéro pair
va sortir ? la réponse est alors 1/2 (il faut donc additionner les
probabilités pour qu’il sort le 2, le 4 et ou le 6).

Ô Ces événements sont mutuellement exclusifs.  Si  n’importe lequel
sort, alors aucun autre ne peut sortir.

Ô L’événement ‘numéro pair’  est satisfait par le n.2 OU le n.4 OU le
n.6.

Ô Si deux événements sont mutuellement exclusifs et si on désire
connaître qu’un ou l’autre soit vrai, alors nous additionnons leur
probabilités :
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Généralisation de la deuxième loi

Ô Si Hi, i = 1, 2, ..., r, sont des événements mutuellement
exclusifs sachant E, alors
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Corollaire à la Ière et de la IIème loi

Ô Si P(H|E) est la probabilité que H soit vraie (ou que l’événement H
se passe), alors

Ô P(non-H|E) représente la probabilité q u e  H soit faux (ou que
l’événement H ne se passe pas).

Ô Sachant que ces deux événements sont mutuellement exclusifs,
alors

Ô Ces événements sont également exhaustifs (ensemble ils couvrent
tout l’étendu des probabilités - un ou l’autre doit être vrai), ainsi
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Troisième loi des probabilités

Ô La troisième loi des probabilités  re la te  de  la conjonction
(‘conjunction’) de deux événements.

Ô Ces deux événements sont considérés comme étant indépendants.
C’est-à-dire, que la connaissance de la réalisation d’un des deux
événements n’influence pas la probabilité sur l’occurrence de l’autre.

Ô Imaginons par exemple de lancer deux dés à six faces, A et  B par
exemple. Le résultat du jet A n’affecte pas le résultat du jet B.

Ô Si R et S sont deux événement indépendants, alors

Ô Définition de l’indépendance
Ô Symétrie
Ô Généralisation :
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Troisième loi des probabilités

Ô Deux événements indépendants et la connaissance
d’i n f o r m a t i o n s  supplémentaires (background
informations).

Ô L a  l o i  e s t  i d e n t i q u e  à la précédente sauf  que
l’information I conditionne les probabilités des deux
événements.
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Troisième loi des probabilités

Ô D e u x  événements dépendants e t  l a  connaissance
d’i n f o r m a t i o n s  supplémentaires (background
informations).

Ô Exemple : la probabilité de sélectionner deux ‘as’ est :

Ô Exemple : Génétique.
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Généralisation de la troisième loi

Ô Pour tous les événements Hi, i = 1, 2, ..., r,
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Exemple : IIIème loi des probabilités

Ô P(R) = 0.6
Ô P(S) = 0.7
Ô Si les deux tests sont indépendants, la probabilité qu’une

personne/objet sélectionnée de façon aléatoire dans la
population soit + +, P(R et S) est

Tests 1/2 + - Total
+ 34 26 60
- 36 4 40

Total 70 30 100
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Exemple : IIIème loi des probabilités

Ô Aucune information ne justifie que 42% de la population
considérée soit ++ et donc que les deux tests soient
indépendants.

Ô On peut vérifier la IIIème l o i  pour  des  événements
dépendants à travers les résultats de la table ci-dessus.

Tests 1/2 + - Total
+ 34 26 60
- 36 4 40

Total 70 30 100
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Exemple : IIIème loi des probabilités

Ô Parmi les 60 personnes/objets + pour le test 1 (R), il y
en a 34 qui sont également + pour le test 2 (S).

Ô Donc, P(S|R) = 34/60 = 0.68

Tests 1/2 + - Total
+ 34 26 60
- 36 4 40

Total 70 30 100
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Ô P(R et S) = 0.34 peut se déduire directement du tableau.

Loi des probabilités totales

Ô Cette loi est également appelée ‘loi de l’extension de la
conversation (‘extension of the conversation’).

Ô D.V. Lindley, Probability. In C.G.G. Aitken, D.A. Stoney (Eds.), The
use of statistics in forensic science, Ellis Horwoord, New York (1991)
27-50 ;
Ô D.V. Lindley, Foundations, In G. Wright, P. Ayton (Eds.), Subjective
probability, John Wiley & Sons, New York (1994) 3-15.

Ô Si A et B sont deux événements mutuellement exclusifs et
exhaustifs (B =  non-A), alors pour tout autre événement
H, la loi dit que

 On utilise cette formule quand on est intéressés à évaluer
la probabilité d ’un événement qui dépend de plusieurs
autres événements eux mêmes mutuellement exclusifs.
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Exemple

Ô La population de la Nouvelle-Zélande est divisée comme
suit:

Ô 83.47% Caucasiens
Ô 12.19 Maoris
Ô 4.34 Polynésiens

Ô Les probabilités de retrouver le même génotype YNH24 que
celui détecté dans  l a  t r a ce  s ’ i l  s’agit d’une personne
caucasienne, Maori ou polynésienne est

Ô  0.013, 0.045 et 0.039, respectivement.

Ô Quelle est la probabilité de retrouver ce génotype dans une
personne choisie au hasard dans la population néo-
zélandaise ?

Exemple

Ô Quelle est la probabilité de retrouver ce génotype dans
une personne choisie au hasard dans la population néo-
zélandaise ?

Ô E, génotype
Ô Ca, caucasien
Ô Ma, Maori
Ô Po, Polynésien
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Exercice : loi des probabilités

m Un dé est lancé.
m Imaginons que E représente l’information que le dé

montre un numéro pair.
m H1 est l’événement ‘le dé montre le numéro 2’.
m H2 est l’événement ‘le dé montre le numéro 4’.

Ô Quelle est la valeur de P(H1|E) ?
Ô Quelle est la valeur de P(H1 ou H2|E) ?
Ô Quelle est la valeur de P(non-H1|E) ?
Ô Quelle est la valeur de P(H1|non-E) ?

La notion de ‘chance’ (odds)

m P(H) représente la probabilité de H.
m Les chances en faveur de H sont :
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O(H) est le rapport entre deux probabilités et donc il
peut prendre toute valeur entre 0 (quand H est fausse)
et      (quand H est vraie).∞



La notion de ‘chance’ (odds) : exemple

m Imaginons le jet d’un dé.
m La probabilité que lors du prochain jet le numéro 3

sortira est 1/6 et la probabilité que ce numéro ne sortira
pas est 5/6.

m Les chances en faveur du numéro 3 sont :

Quand les chances sont < 1 on parle de ‘chances
contre’ et on peut les inverser : chances de 5 à 1

contre l’événement.
Si O(H) > 1 on parle de ‘chances en faveur’.
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Des ‘chances’ aux probabilités

m Imaginons de connaît r e  l e s  chances  ‘contre’ un
événement.

m Par exemple : 5 à 1 contre le résultat ‘n. 3’.
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