

Written by flexaplex

PDF by Destron

Ver 1.2

The Complete Beginners Guide
To GML Programming

2

CONTENTS

Table of Contents
Getting Started .. 4

Functions ... 5

Variables.. 6

Global/local variables .. 8

If / else statements ... 12

Some uses of variables .. 19

With statements ... 23

For loops ... 25

Arrays .. 28

Scripts .. 33

Final notes ... 36

Appendix A – Syntax Highlighting ... 37

Appendix B – Built In Variables ... 38

Credits ... 39

Where to get help ... 39

3

FORWARD
If you are new to programming the prospect of using GML may seem daunting however reading this
guide is likely to be a great help to you. How easily you can learn to use GML will depend on how much
experience you have already gained using drag & drop and your ability to think logically. However with
some practice and learning most people will be able to grasp the general concepts behind coding.

The guide will be best suited for people who have been messing around with DnD (Drag & Drop) for a
little while and are now looking to move onto using GML, however it can be useful for all beginning
levels but it is suggested that you know how to use Game Maker and it’s interface before proceeding
with this guide. I am of course always interested in suggestions people have on changing / adding
content to the guide and any feedback in general.

This guide was originally written by flexaplex from the GMC, and is being reproduced in PDF format by
Destron, with permission from the original author under the GNU GPL license. If you received this guide
without a copy of the GNU GPL license, please visit http://gm.destronmedia.com for a complete archive.

This guide is distributed by Game Maker @ Destron Media with permission from the original author.
Please do not redistribute this guide in part, or in full, without express permission from the author.
Destron Media does not own the right to grant permission to redistribute this guide.

One thing you will notice while programming in GML is that while you are typing, some words will
change colors, and some will be bold. This is known as syntax highlighting and it is designed to assist you
while you are writing GML in the code editor. All of those colors are not there just to look pretty, they
actually mean something. They can help you be sure you are calling resources by their right name, but
they can also serve as a warning when you accidently use something you shouldn’t. For more
information on syntax highlighting see Appendix A. Also, while looking through the code in this guide
you will see text that looks like this; This text is code comments, a place for the programmer to put in
comments so that they will know what they did next time they look at it, or someone else will know
what that they did if the release the code or someone else works on it. This text is completely ignored
by GM, and can contain anything you like. There are two ways to use comments … You can put // before
it , but that only works on the current line. If you need more than one line you can enclose the entire
comment with /* and */. You will see examples of both while reading this guide.

http://gmc.yoyogames.com/index.php?showuser=51383�
http://gm.destronmedia.com/�

4

Getting Started

The first thing you need to do when wanting to code is to drag an 'execute a
piece of code' action into the event where you wish to use code. The action
can be found under the 'control' tab of the DnD actions, once you have
dragged it into the action area the script editor will open, here is where you
type any GML you want to use.

This part of the code editor window can be your best friend at
times! As you type code it sill suggest functions for you based on
what you have typed, as well as show you the arguments that go
along with them. Some of them can use in insane amount of
arguments, so this is a handy addition to the code editor!

5

Functions

A function is separate piece of code which has already been written and has a specific purpose. In Game
Maker there are many different in-built functions which you can use to do things, for example:

move_towards_point(x,y,sp); //this moves you towards a point
room_goto_next(); //this makes you go to the next room
draw_text(x,y,string); //this draws text on the screen
instance_create(x,y,obj); //this creates an instance of an object

You may not be aware of it but you have more than likely used functions yourself already, this is
because a lot of the DnD actions are actually just functions. If you look you will see that there is actually
a DnD action to move towards a point, goto the next room, draw text and create an object. When you
call a function in code it is exactly the same as calling the action from DnD except you are just doing it in
a different way. There are however a lot more functions you can use in GML which are not available to
use in DnD, all of them are listed in the manual with an explanation of what they do.

To use a function correctly in GML you simply have to put the function's name followed by parenthesis
(). You can see in the above code that you can also use values inside the parenthesis, these are referred
to as arguments or parameters. To add these you must place values between the parenthesis with a
comma separating them. Arguments work exactly the same as the values you use in DnD actions, they
are simply values which you are passing to the function so it can use them in its code. Note though
unlike in DnD. in GML you could now type in the wrong number of arguments; if you do this GM will give
you an error as you must use the same number of arguments that is stated in the manual.

When you use functions in GML there is actually an extra element which you don't get with DnD, this is
return values. Instead of values you give a script, a return values is a value the script gives to you after it
has finished executing. The returned value will be something calculated in the function when it runs and
will likely to be of use to you in some way. In the manual it will always state what a function returns,
however note that not all functions actually return a value.

So how do you use these return values? Well most often you will want to assign them to a variable
which we have not covered yet, so I have explained this later in the 'some uses of variables' section.

6

Variables

Variables are an essential part of any programming language, GML is no exception. A variable is like a
reference for storing a value; this reference has to be given a name. The name can be anything you like
as long as it does not clash with any names that already exist. An example:

 apples = 4;

In this example the variable is given the name apples, this variable apples is then assigned (given) a
value of 4. In GML the equals sign is always used to assign a value to a variable.

Once you have assigned a variable a value from now on when you call upon this variable at any point it
will be the equivalent to calling that value which you assigned to it. For example if you were to now use:

 fruit = apples;

It will set the variable fruit to 4 as the variable apples has the value 4. Or if you were to have another
variable called pears with a value of 2 you could use:

 fruit = apples+pears;

fruit would now be set to 6 (as it is 4+2). You could then for example go on further to use this fruit
variable:

 nutrition = fruit*2;

This would set the variable nutrition to 12 (the * is the symbol for multiply in GML, so it the previously
calculated 6 multiplied by 2 which equals 12).

Strings

As well as 'number' values (the proper terminology being real values) variables can also be set as 'text'
values (the proper terminology being string values). To do this you need to put text inside 2 quotes
either " " or ' '. For example you can set a string to a variable like so:

 name = ‘John’;

or

 name = "John";

7

Using either the variable name will then have a value equal to the string "John". You can now do
whatever you wish with this variable just like you could with the apple variable, most commonly you
would want to draw the variable, which you can do using:

 draw_text(x,y,name);

This will then draw the text "John" at the instance's x and y position.
Just like real values you can also combine strings together using the + sign. For example if have the
variables:

 first_name = "John";
last_name = "Smith";

You can draw the variables joined together; I will show some different formats you might wish to use to
do this in:

 draw_text(x,y,first_name+last_name); //this would draw JohnSmith
draw_text(x,y,first_name+" "+last_name); //this would draw John Smith
draw_text(x,y,"NAME: "+first_name+" "+last_name);//this would draw

NAME: John Smith
draw_text(x,y,first_name+"#"+last_name);
/*
this one is slightly different as it uses the special character #, when
used in GML it is treated as a return carraige (a new line) so this
would draw

John
Smith */

As well joining strings together you may also wish to join a string to a real value. To do this you need to
first convert the real value into a string, this can be done via the string() function. For example if you use
this:

 num = 1;
item = potion;
draw_text(x,y,item+string(num));

It will draw the string "potion1". If you try to combine a string to a real value without using string() first
you will get a 'cannot compare arguments' error.

TIP
•Copy and Past is a great thing, howerver it may not work so well to copy from this guide
and paste it in GM! If you get random errors from something that you copied and pasted,
I suggest you manually type it out and see of the error still occurs.

8

Global/local variables

So far I have been explaining how to use variables but not exactly where they are set to.

- local variables

When you set a variable normally like I have been showing then this variable is set locally to the object
you are putting the code in (well this is technically not correct it is in fact set locally to every instance of
the object but I would not worry about that for now). When a variable is set locally to an object it means
that only that object will be able to call upon it. For example if you put this in the creation event of an
obj_player:

 life = 5;

Then only obj_player is going to have the variable power set to it. If you want to call the variable from
inside another object like an enemy for example to get how much damage the player can do you need
to first put the object name with a dot before it like so:

 damage = obj_player.life;

Doing this calls the object's variable. If you wish to set a variable in another object you should do the
same also... i.e. if you use :

obj_player.life = 6;

It will set the player's life variable to 6. A more common example of when you need to call upon a
variable in another object is when calling upon another object's position. For example if you use this in
an object's end step event:

 x = obj_player.x+40;
y = obj_player.y;

This will set your position to the right of the player every step. You should note that x is a variable just
like any other we have been talking about, however it is a special in-built variable... I will go into more
detail about these later.

- global variables

As well as setting variables locally to an object you can also set them globally. To do this you just need to
put the word global with a dot before it. For example:

global.name = "Mr Cool";

TIP: The purple text indicates a resource,
so if the name stays black, you probably
made a mistake!

9

This will now set the global variable name to Mr. Cool. When a variable is set globally all the objects will
have access to the variable, you can also set the variable from any object you wish. To call upon the
variable you just need to put the same global. in front of it. For example if you want to draw the title
you can use:

 draw_text(x,y,"Name: "+global.name);

Most commonly you will want to use global variables when you are changing rooms but want to keep a
variable value known. You cannot use local variables to do this as when you leave a room the objects
will be destroyed and their variables will be cleared along with them, an example of this would be a
game score variable. Something you should note that with such a variable is that you often need to
carefully consider where you wish to initially set the variable value. For example if you want to initialize
a global game score variable like so:

 global.game_score = 0;

Where would you put this? A common mistake is to put it in the creation event or the room start event
of an object in your first level. The problem with this is that if you die and restart the room then the
creation/room start event is going to be executed again and the variable is then going to be set back to
0. There are a few ways to deal with this problem; one is to use the game start event instead (you need
to make sure the room where you set this is the first room in your game though!) or a more preferable
way is to have a menu room at the very start of the game and set the variable in an object there. When
you exit to a menu you will probably want to wipe the score anyway... you cannot do this using the
game start event unless you completely restart the game when you go want to go back to the menu.
You will likely find a menu room is useful for setting a lot of variables in your game if you have one.
Generally when setting/changing global variables you would want to do so in a controller object.

- var

There is also another way you can use variables and this is by declaring them with var. When you
declare a variable with var it makes the variable local to just the script you are using it in (think of it like
a 'temporary' variable which belongs to the script). This means that no object will be able to call upon it
after the script has finished executing and you will not even be able to call it from any other scripts that
are executed during the event. So make sure you know that you are not going to use the variable
elsewhere otherwise you will get an unknown variable errors. How you declare a variable with var is like
so:

var nearest_enemy;

10

Doing this the variable nearest_enemy will now be localized to the script you call it in. All you basically
have to do is put the word var before the variable (you should see the word go bold), you can do this
anywhere in the script (as long as it is before you use the variable). There are some thing to note with
the syntax when using var:

1) You HAVE to use a semi-colon at the end of the line, in this particular case GM will throw an error if
you don't.
2) You cannot assign a value to a variable while declaring it with var, ie you CAN'T do this:

 var nearest_enemy = enemy1;

3) You still need to initialize the variable though (GM doesn't just know what it is), i.e.:

 var nearest_enemy;
nearest_enemy = enemy1;

4) You can declare several variables with var at the same time using a comma, for example:

 var nearest_enemy, max_health, dist;

This will declare nearest_enemy, max_health and dist all local to the script you use it in.

You might be wondering why you would want to declare a variable local to a script. Well the main
reason is memory... a variable declared with var is cleared from memory as soon as the script has
finished executing. The other reason is to stop variable names clashing. It is considered good practice to
declare variables with var for scripts when they are only going to be used in the script itself... especially
if you release the script for other people to use as you do not want your variable names clashing with
variables already in their game.

As well as var there is finally another similar way to assign a variable... this is with globalvar. This follow
all the same syntax rules as declaring with var (need to use a semi-colon, can't assign values, need to
initialize still and can declare multiple variables using commas). An example would be:

 globalvar game_score;

When you declare a variable with globalvar all scripts will now recognize the variable... it is basically
exactly the same as using global. before a variable. The advantage of using globalvar is you only have to
use it once and then the variable is globalised for the rest of the game... now you can use the variable as
a global variable without having to put global. before it all the time. If you use it though make sure you
keep track of which variables you have declared global otherwise you may start making errors.

11

-In-built variables

Up to now I have only been referring to variables that you create yourself, however there are also some
variables that are in-built as well. These variables are set to objects by Game Maker automatically and
are used to do specific things within the program. You will probably recognize a lot of these variables
but may of not realized that they were variables at the time, for example; direction, gravity, speed,
score, lives and even x, y are all just in-built variables. Just like normal variables there are both local and
global variables for the objects, you can see a full list of the in-built variables by clicking the scripts tab
then 'Show Built-in Variables', or see Appendix B, they are also all explained briefly in the manual if you
look for them. Whenever you type an in-built variable in GML it will turn the color blue, you should take
note of this so you do not try and use the name of an in-built variable for one you are trying to create
yourself as doing this can cause unwanted results.

Note that you should use in-built variables just like normal variables. You can call upon their values and
you can also set your own values to most of them, however some of them you cannot. These are
marked as 'read-only' and are depicted with a * character afterwards in the manual, these variables you
cannot change the value of as they are only set by Game Maker alone in a specific way.

-Uses of variables

I am not going to show any uses of variables yet as you often want to be using them alongside if
statements which I am about to cover, you will see I have put a section on some uses of variables
straight after the next if statement section.

12

If / else statements

If statements are used when wanting things to happen only if a certain condition is met. They take the
form:

if (a condition is met)
{

 perform actions
}

When the condition is met (i.e. it is true) then all the actions you put inside the braces {} will be
performed. If the condition is not met then none of the actions will be performed. Note that you need a
closing brace } for every opening brace that you use { if you do not have an equal number then you will
get an error. It is important to use braces so then GM knows which actions it is only supposed to
perform when the condition is true. If you don't use braces then only the first action you put will be
conditional on the if statement and the others will be executed all the time regardless.

-Checking Boolean Values

A Boolean value is one that can only be true or false. Here is a basic example of testing a Boolean in an if
statement:

if (place_meeting(x,y,obj_wall))
{

 speed = 0;
}

This code would check whether you are meeting a wall or not and if so it would set the speed to 0. This
is an example of a function returning a value that can only be true or false. You can also check variables
value, for example if you have a Boolean variable called message_allowed, then you could use this code:

 if (message_allowed)
{

 show_message("Hello");
}

This would only show "Hello" when message_allowed is set to true and would not do anything if it's set
to false. You could also check for a Boolean value being false, this can be done using the ! operator
(which means not in GML). i.e.:

 if !(place_meeting(x,y,obj_wall))

Will check if you are not meeting a wall, and

 if !(message_allowed)

13

Will check if message_allowed is not true (ie it is false).

-Checking Variable Comparisons

As well as just checking Boolean values you can also check variable comparisons. A basic example would
be:

 if (health == 100)
{

 lives = 3;
}

This code would only set lives to 3 when health is equal to 100. Notice the difference that a single = is
used when assigning a value to something, but a double == is used when comparing values. As well as
comparing values to be equal to each other you can also compare:

 if (health < 100)

This will check is if health is less than 100.

 if (health > 100)

This will check is if health is greater than 100.

 if (health <= 100)

This will check is if health is less than or equal to 100.

 if (health >= 100)

This will check is if health is greater than or equal to 100.

if (health != 100)

This will check is if health is not equal to 100. NOTE: Make sure you do not try to use if (!health == 100)
when trying to check if a variable is not equal to a value, this is a common mistake. The problem is GM
will actually read the code as if (!health) == 100, this is something completely different to what you
want. If you do want to use this make sure you use brackets in the correct location, i.e. if !(health ==
100) this is now the same as using if (health != 100), this error occurs most often when brackets are not
used with if statements.

That is all the comparisons you can use in GML.

14

-Combining conditions

There is also the possibility to combine conditions, for example:

if (x > 10 && x < 100)
{

 zone = 1;
}

This checks if x is greater than 10 and x is less than 100 and sets the variable zone to 1 if it is (the &&
sign means and in GML). For this condition to be met x must be both greater than 10 and less than 100.
Another combination you can use is:

if (sprite_index == spr_walking || in_air)
{

 image_speed = 3;
}

This checks if the sprite_index is walking or the variable in_air is true (the || sign mean or in GML). For
this condition to be met the sprite index can be either walking or the variable in_air can be true or both
condition can be true, basically the only time when it will not be met is when the sprite_index is not
walking and in_air is false.

The last way which you can check combinations is using ^^ (the ^^ sign means xor in GML). This is
exactly the same as || except now the condition is not met when both are true, only when one or the
other is true. You do not really need to concern yourself with this operator though as it is infrequently
used and you are unlikely to need it.

-Else Statements

Else statements are used when wanting something to happen upon the if statement condition not being
met. It takes the form:

 if (condition is met)
{

 perform first action
}
else
{

 perform other action
}

Basically what happens is if the if condition is met it performs the first action as normal otherwise (if it is
not met) it performs the other action. For example:

15

if (message_allowed)
{

 show_message("Hello");
}
else
{

 show_message("Disabled");
}

Like normal this will show "Hello" when the variable message_allowed is true but now when
message_allowed is not true it will show "Disabled". Another example:

 if (x > 10 && x < 100)
{

 zone = 1;
}
else
{

 zone = 2;
}

This will set zone to 1 when z is greater than 10 and less than 100 as shown previously otherwise (if x <=
10 or x >= 100) it will set zone to 2. You can also combine else statements with an if statement and then
even multiple else statements if you want. For example:

 if (value == 3)
{

 show_message("1st statement");
}
else if (value == 4)
{

 show_message("2nd statement");
}
else if (value == 5)
{
 show_message("3rd statement");
}
else
{
 show_message("other statement");
}

What this does is it will show "1st statement" when value is 3 otherwise it will show "2nd statement"
when value is 4 otherwise it will show "3rd statement" if value is 5 otherwise (if value is not 3,4 or 5) it
will show "other statement".

16

-Switch Statements

Switch statements can be used when wanting to perform different actions depending on the value of a
single variable. In fact it pretty much is used in replacement to that long if, else code I just wrote. Taking
that as an example it could be written instead using a switch statement like so:

switch (value)
{

 case 3: {show_message("1st statement"); break;}
 case 4: {show_message("2nd statement"); break;}
 case 5: {show_message("3rd statement"); break;}
 default: {show_message("other statement");}

}

The advantage of doing so is it is then easier to read and recognize. How a switch statement works is it
checks the value given after it in the brackets (often this is just a variable used here) then it checks for
any cases you have put which match this value. Upon finding the case it then executes ALL the rest of
the code after it including the code in other cases. This is why you need to put that break there
otherwise all the rest of the code will be executed included the cases where the value is not matched, it
can be easy to forget to use break so try to always remember. The default case at the end is used when
none of the given cases match the value, this is the equivalent of using that final else statement at the
end.

It is important to note that all this is doing is checking for a matching value it is not actually checking for
a variable matching a value. You cannot use things like switch (x, y) to switch 2 variables and you cannot
use comparisons like:

switch (x)
{

 case < 40: {}
 case > 40: {}

}

As things like this do not work you will need to use a normal if statement instead.

There is another thing to note when using switch statements, which is when you want multiple cases to
perform the same action. It can now be done easily like so:

switch (value)
{

 case 4: case 5: case 9: {show_message("1st action"); break;}
 case 2: {show_message("2nd action");}

}

This will show "1st action" when value is equal to 4,5 or 9 and show "2nd action" when value is equal to
2. It is the equivalent of using the following if statement set:

17

if (value == 4 || value == 5 || value == 9)
{

 show_message("1st action");
}
else if (value == 2)
{

 show_message("2nd action");
}

-Expressions

This part is more advanced and you are unlikely to need to know this at a beginners level so you can skip
straight to the 'Uses Of Variables' section if you cannot follow it.

In the manual you might have seen that if statements are actually explained to have the form:

if (expression is true)
{

 perform statement
}

Well what we have been dealing with are referred to as expressions, an expression is a combination of
values, variables, operators, or functions that are calculated to a value. For example when you use:

 x < 100

What GM actually does is it reads that expression and returns a value of 1 (if the expression is true) or 0
(if the expression is false), effectively that expression is just equivalent to the value of 1 or 0 depending
on whenever it is true or not. You can even assign an expression to variable, like so:

 less_than_hundred = (x < 100);

The variable less_than_hundred will then equal 1 or 0 depending on whether the expression is true or
not because like I said the expression x < 100 when ran by GM is effectively just the evaluated value (in
fact all assignment values are referred to as expressions as we will come onto in a bit). Now how if
statements work is they evaluate the entire expression within the brackets after it, and then check
whether the expression is true or false. If it is true then it executes the code inside the first braces, if it is
false it executes the code inside the else braces. General code, like assignments is referred to as a
statement in case you are wondering what it means in the manual by this.

So what GM is actually looking at is this:

 if (entire expression) is true
{

 perform statements
}

That is basically it.

18

But just to add to the confusion, there is another thing that GM has to deal with... Expressions do not
always have to return a Boolean true or false value. For example (x == 0)+7 is an expression, it will equal
7 or 8 depending on whether x == 0 or not. Even 4+2 is an expression it will equal 6, even a value just of
its own is an expression. As I mentioned earlier all assignment are just calculated expression, now when
assigning these expression to a variable it make sense for them to be able to be non Boolean values but
when using it as a condition in an if statement they often don't really make any sense. For example:

 if ((x == 0)+7)

or

if (4+2)

Neither of these you would have any practical use, however GM still needs to be able to handle them if
they are used. It does actually says in the manual how GM handles things:

If the (rounded) value is <=0 (false) the statement after else is executed, otherwise (true) the other
statement is executed

This means (note the rounded bit in there) that if an expression in an if statement is evaluated as < 0.5 it
is considered false and if it is evaluated as >= 0.5 it is considered true. You may actually occasionally see
this functionality exploited by people to shorten code, for example in this code:

col_inst = collision_line(x1,y1,x2,y2,obj,prec,notme);
if (col_inst)
{

 move_towards_point(col_inst.x, col_inst.y, 4);
}

If you check the manual you will see that the collision_line function does not actually return a Boolean
true or false, it in fact returns the instance id of an instance if one is found, if one is not found it returns
a negative number, therefore the col_inst variable is actually being set to a value like 100102 or -4. The
reason this code still works is because when it finds a an instance it will return an instance id which is a
large positive number (therefore col_inst will be evaluated as true since it will be >= 0.5) and when it
does not find an instance it will return a negative value (therefore col_inst will be evaluated as false
since it will be < 0.5). The non shortened code should actually look like this:

col_inst = collision_line(x1,y1,x2,y2,obj,prec,notme);
if (col_inst > 0)
{

 move_towards_point(col_inst.x, col_inst.y, 4);
}

It is technically bad notation to drop the > 0 comparison and exploit how GM handles non Boolean
expressions to make the code shorter, however it is often done by people when using functions which
return an instance id and in some other scenarios also, so try to watch out for people doing it in case it
causes you any confusion.

19

TIP

Some uses of variables

Variables are going to be useful in most things you want to do however I will show some common
usages.

-Simple values

Say you want to keep track of how much ammo in a gun you have. The way to do this is by creating an
ammo variable yourself. So first you want to initialize the variable, this will probably be done in the
creation event like so:

 ammo = 100;

This will set the variable ammo equal to 100 when the instance is created. From here you can do
whatever you wish with the variable, for example you could draw the value of the ammo using:

 draw_text(x,y,string(ammo));

You can also decrease the ammo in a firing event, for example:

ammo -= 1;

ammo -= 1; is a little coding shorthand which means the same as ammo = ammo-1; it is
the same as ticking the relative box in DnD. The same can also be done with ammo += 5;
to add 5 to the ammo. In the same way you can also use /= to divide a variable by a
value and *= to multiply a variable by a value.

While I am on this subject I would also like to mention another trick of multiplying string values, doing
these results in a string repeating the given number of times. For example:

 draw_text(x,y,3 * 'car');

Note: the number value must be used before the string value.

This will actually draw the text "carcarcar" (as it results in car written 3 times). Doing this for example
can be useful when wanting to blank out a password:

 draw_text(x,y,password_length * "*");

NOTE: here I have used the string() function, this function turns a
real number into a string value. This is done because game maker
draws values from strings not real.

20

-Storing the value of functions

A lot of functions return values; you will often want these values to be stored in variables. For example
with the instance_create function it returns the id of the instance it has just created, you could then
assign this id to a variable like so:

 obj = instance_create(x,y,obj_enemy);

The variable obj will now be equal to the id of the instance created and you can now use this to do
anything you wish with. You could for example use this to move or destroy the particular instance for
example.

-On/off switches

On/off switches are often needed for many things. For on/off switches you only want to be giving a
variable two values either 0 for off or 1 for on. In game maker there are also built-in constants for this as
well which are false (the same as 0) and true (the same as 1), a variable like this that can only be
true/false is called a Boolean variable. I will give some examples where on/off switches can be useful.
Say you want to show some text only for a limited number of time you could make a variable show_text
like:

 creation event

 show_text = true;

Then in the draw event if you use:

 if (show_text)
{

 draw_text(x,y,"text");
}

This code will only draw the text if the variable show_text is true (a value of 1). So now if you set the
variable show_text = false at any point the text will no longer be shown. For this example you could use
an alarm. So if you add in the creation event:

show_text = true;
alarm[0] = 120;

then in an alarm 0 event:

 show_text = false;

This will set an alarm to go off after 120 steps, after this happens the show_text variable will be set to
false and the text will no longer be drawn.

A similar technique can be used when wishing for a collision event to only occur once, for example:

21

 collision event:

if !(hit)
{

 //do collision
 hit = true;

}

This code only does the collision if the variable hit is false... then after it does the collision it sets the
variable hit to true so it doesn't happen again. The symbol ! in GML mean not, so that if statement is
checking whether the instance is not hit and only doing the collision code if so. A small problem arises in
this example that once it collides and you move away from the collision you can no longer collide with
the object again as the hit variable is still set to true. So to get around this you can use this code in the
step event:

if !(place_meeting(x,y,hitobject))
{

 hit = false;
}

where you replace hitobject with the name of the object which the above code is hitting. What this does
is it sets the variable hit back equal to false when the object is no longer in collision with the object.

There are many other uses for on/off switches, dragging and dropping an object is another common
example.

-Toggling a variable

This is very commonly needed when dealing with Boolean variables; you often want to switch things on
and off like showing text for example. A common incorrect way of doing this is by doing the following:

if (show_text = true)
{

 show_text = false;
}
if (show_text = false)
{

 show_text = true;
}

22

You can see why this doesn't work if you follow through the code:

⊕ If show_text starts of false: after the first if statement the variable isn't changed so is still false
(as the if statement isn't met) then after the second if statement the variable is changed to true
(as the if statement is met)

⊕ If show_text starts of true: after the first if statement the variable is changed so is still false (as
the if statement is met) then after the second if statement the variable is changed again back to
true (as the if statement is now met due to the variable being changed before)

So as you can see the show_text variable always winds up true.

Now a way to overcome this is to use the following:

if (show_text)
{

 show_text = false;
}
else
{

 show_text = true;
}

This works because the second if statement is now not executed when show_text was originally true
because the else statement will not be met when this is the case.

Although this code works perfectly fine there is actually a quicker, more efficient way of doing this by
using the following:

 show_text = !show_text;

You can use this simple piece of code to toggle any Boolean variable, the ! sign in GML is the not sign,
when applies to a Boolean variable it makes it the 'opposite' to what it is which is the exactly what we
wanted.

23

With statements

With statements can be used when wanting to call upon another object, you do this by putting an
object index or instance id after the with statement. For example:

with (obj_player)
{

 x = 50;
}

If you use this it will set obj_player's x value to 50. Whenever you use a with statement you are
effectively executing code inside the object, this means that if you use a variable you will now be
accessing them local to obj_player not the object you are using the code in, this is why you are now able
to change obj_player's x variable. This also means that when you call functions they will be executed
locally to the object also, so say you want to destroy the object you would use:

with (obj_player)
{

 instance_destroy();
}

In fact this is the only way of destroying another object as the instance_destroy functions doesn't take
any arguments and only destroys the instance it is executed under.

There is also another important aspect to the with statement. So far I have just shown it used on
obj_player, presuming there would only be 1 player object in the room, however what happens if you
use it on an object which has many instances in the room? Say for example you have several obj_enemy
instances in the room and you use this code:

 with (obj_enemy)
{

 hspeed = 5;
}

What this will do is it will actually set the hspeed equal to 5 for all the instances of obj_enemy in the
room. It does this by cycling through all the instances one at a time, and executing the code you put
under every single one of them. This can make the with statement very useful but also very slow
sometimes if there are lots of instances of the object in the room. You may have tried to do this before
using a different code:

 obj_enemy.hspeed = 5;

However this code is completely different. When you call an object index like that it will only set the
hspeed for the 1st instance of obj_enemy in the room... the rest will not be called upon at all.

24

There are many different scenarios where you may want to use a with statement to loop through every
instance of an object, you should always keep in your mind the possibility of using one when dealing
with instances. For example you can use code which only does things to specific instances, say you want
to set the hspeed for only red enemies, you could use this:

with (obj_enemy)
{

 if (color == "red")
 {
 hspeed = 5;
 }

}

So, if using an object index in a with statement loops through every instance of the object in the room,
how do you call upon a specific instance of an object? Well to do this you just use the instance id. For
example if you want to destroy the instance of an enemy you just collided with (remember you use
other to get the id of the other instance in collision), you could use this in the collision event with
obj_enemy:

with (other) //other in the collision event is equal to the id of the
instance you have collided with
{

 instance_destroy();
}

-Using other and var within a with statement

When you use other actually within a with statement (note this is completely different from calling the
other instance for the with statement which I have just shown) it now applies to the instance the with
statement was executed under. You can then use this for example to set a local variable in the original
calling instance. For example if you wish to destroy the instance of an enemy furthest to the right you
can use this code:

 greatest_x = -1;
inst_greatest_x = noone;
with (argument0)
{

 if (x > other.greatest_x)
 {
 other.greatest_x = x;
 inst_greatest_x = id;
 }

}
with (inst_greatest_x) {instance_destroy();
}

See how you are now checking and setting the greatest_x variable from the original instance.

Comments proceeded with a // should always be
on a single line, the formatting of this guide makes
this one, and many more in the guide on two lines.
Be mindful of this if you copy this code!

25

Often with scripts like these however the variables being used are actually only needed locally in the
script, in this case use can use the more preferable solution to declaring the variable with var:

var greatest_x,inst_greatest_x;
greatest_x = -1;
inst_greatest_x = noone;
with (argument0)
{

 if (x > greatest_x)
 {
 greatest_x = x;
 inst_greatest_x = id;
 }

}
with (inst_greatest_x) {instance_destroy();
}

This works because once you var a variable it is localised to the script not the object, so it doesn't matter
what object you call the variable from it will still just be seen as belonging to the script.

For loops

Most of the time you see a for loop in the form:

for (i = 0; i < 5; i += 1)
{

 draw_text(10,10+i*8,"hello");
}

-You may wonder what this i is?

Well it is just a variable, like any other variable. i is often used as a variable name because it is short (and
was given the letter i from the word iterator), since the variable is rarely needed outside the for loop
there is no need to give it a meaningful name, you can though use any variable name you wish.

-How does the for loop work?

Well at the start it executes the first statement, in this example i = 0, so all that will be happening here is
the variable i will be set to 0. Next the middle expression is checked. If the middle statement is not
correct (false) then; the for loop will be broken completely, the code in the braces will be skipped over
and the rest of the code in the event will then be executed. If the middle statement is correct (true) then
it executes the code between the braces, in this case it draws text, you can put any code you wish here
however. After it has executed the code in the braces it then executes the last statement in the for loop,
in this example i += 1 which is just adding 1 to the variable i. Then it just cycles through the whole thing
again, missing out the initial i = 0 statement though and starting from the check of if i < 5, eventually this
check will always become false, in this case because you are adding 1 to i each time, it will be false after
5 iterations (loops) when i will have added up to 5 (which isn't less than 5).

26

If you do however put a middle expression in that never becomes false then this will cause the game to
crash. This is an infinite loop.

So what will the result of this for loop look like?
Well it will draw the following text:

 hello
hello
hello
hello
hello

Each hello will be draw at x position 10, the top hello text will be draw at y position 10 then all the
others will be drawn 8 pixels below each other. To explain it better, I will show exactly what game maker
is doing when it reads that code, (I'm only showing the y value it is drawn at, as the x value is obvious):

[i = 0]
•draw "hello" at
10+(0)*8 = 10
• Add 1 to i

[i now = 1]
•draw "hello" at
10+(1)*8 = 18
•Add 1 to i

[i now = 2]
•draw "hello" at
10+(2)*8 = 26
•Add 1 to i

[i now = 3]
•draw "hello" at
10+(3)*8 = 34
•Add 1 to i

[i now = 4]
•draw "hello" at
10+(4)*8 = 42
• Add 1 to i

[i now = 5]

Now the middle
condition i < 5 is no

longer true when this
happens the loop is

broken and it
continues with the
rest of the script.

27

-Why use a for loop instead of a while loop?

Well it's just preference of notation really, everything you can with a for statement you can also do with
a while or a do statement, for loops are generally used when dealing with the need for a changing
variable. The previous code though could be written:

i = 0;
while (i < 5)
{

 draw_text(10,10+i*8,"hello");
 i += 1;

}

Or

 i = 0;
do
{

 draw_text(10,10+i*8,"hello");
 i += 1;

}
until (i >= 5)

Perhaps thinking of it like this can help you understand what exactly is happening in a for statement as
well.

Well lots of things, they are very useful. You generally want to be looking to use them when you have to
do something repetitive which is in a pattern (imagine drawing 100 dots in a line without using a loop of
some kind). They save time coding but also have the major advantage of leaving your code
customizable... say in your game you want to draw dots in a line but you want to ask the user how many
dots they want to draw. What you can use is:

 var dots,i;
dots = get_integer("How many dots",3);
for (i = 0; i < dots; i += 1)
{

 draw_sprite(spr_dot,-1,10+i*5,10);
}

This will then loop the amount of times equal to the dots variable given by the user. You're going to
have great difficulty trying to do this without the use of a loop.

Another common time when for loops are used is when you are dealing with arrays, which we are about
to come on to.

28

Arrays

To explain what arrays are I am going to jump straight into an example. Say you want to draw a message
in your game, but you wish for this message to be a randomly chosen from several messages. There are
a few ways of doing this, I am going to show you a technique by setting up an array in the creation event
like so:

 message[0] = "that's not funny";
message[1] = "don't look down!";
message[2] = "stop sleeping on the job";
message[3] = "play nice";
message[4] = "how can you see with those glasses on?";
message[5] = "you should probably turn around";

You should hopefully be able to see from this that an array is like a 'list' which is a good way to think of
them. Say now if you use this in the draw event:

 draw_text(x,y,message[3]);

This is now going to draw the text "play nice" as that is what message[3] was set to. Another way to do
this is by using a variable like so:

 var message_choice;
message_choice = 3;
draw_text(x,y,message[message_choice]);

Here is where the usefulness of arrays starts to come in. You should be able to see now that you change
the value of the variable message_choice from 0 to 5 and it will change the corresponding message
which is shown. Using this you can set up the variable message_choice to be given a random number
from 0-5 like so:

 message_choice = floor(random(6));

Applying all the code together now you get:

 var message_choice;
message_choice = floor(random(6));
draw_text(x,y,message[message_choice]);

This will now draw a randomly chosen message of the 6 messages you wrote in the creation event.

note random(6) will return a random number from 0-6 excluding the number 6 itself. floor() will
then round this number down to the nearest integer (another word for whole number) this is used
because the random() function gives numbers with decimals in such as 4.1938 this is obviously not
wanted. The result will be a random integer value either 0,1,2,3,4,5

29

-Using for loops with arrays

Using for loops is a common way of getting the advantages of an array system. When you set things up
using arrays instead of variables you can loop through a value to call upon every 'item' in a list. For
example with the previous example, say you now wish to draw all the messages at once, this can be
done very easily using a for loop like so:

var i;
for (i = 0; i < 6; i += 1)
{
 draw_text(x,y+i*15,message[i]);
}

What this is doing is it is looping through every value of i and thus looping through every message to
draw. You should hopefully be able to see how much easier this is to now to do than if you had used
variables.

-2D Arrays

I have so far only been showing you examples of 1D arrays, you can however also use 2D arrays. These
are a bit more difficult to understand but I will again jump straight into an example to show what these
are. Say you want to draw a made tic-tac-toe game. You could set up a 2D array to do this like so:

 square[0,0] = "X";
square[0,1] = "0";
square[0,2] = "X";
square[1,0] = "X";
square[1,1] = "X";
square[1,2] = "0";
square[2,0] = "0";
square[2,1] = "X";
square[2,2] = "0";

What this is doing is it is creating like a board or a grid. Where the array gives reference to the marker
that is in each square. It may be easier to see what's happening if you reorganize the code like this:

square[0,0] = "X"; square[0,1] = "0"; square[0,2] = "X";
square[1,0] = "X"; square[1,1] = "X"; square[1,2] = "0";
square[2,0] = "0"; square[2,1] = "X"; square[2,2] = "0";

You can see now hopefully see the created grid easier. From this grid you can now change the value of a
square easily, for example if I was to put:

 square[1,1] = "0";

It would change the middle square from a "X" to a "0".

You can now also draw the board using a double for loop like so:

30

var i,j;
for (i = 0; i < 3; i += 1)
{

 for (j = 0; j < 3; j += 1)
 {
 draw_text(10+j*10,10+i*10,square[i,j]);
 }

}

This may prove difficult for you to understand, if it does I advise messing around with the code a bit and
seeing what happens hopefully by doing this you should what the code is doing.

The most important thing though in setting the board up in an array is now it makes searching for
whether there is a winner or not much easier. The reason is you can use for loops to loop through all the
rows and columns from the array indexes. I will show you some an example of some code you could use
to check for a winner:

var i,j,count,val;
winner = "noone";
for (i = 0; i < 3; i += 1)
{

 count = 0;
 for (j = 0; j < 3; j += 1)
 {
 if (square[i,j] == " ") {val = -4;}
 if (square[i,j] == "X") {val = 1;}
 if (square[i,j] == "0") {val = 0;}
 count += val;
 }
 if (count == 3) {winner = "X's";}
 if (count == 0) {winner = "0's";}

}

This code is just checking the horizontal rows. It does it by converting the text into numbers -4 for a
blank square, 1 for a "X" square and 0 for a "0" square. Then adding up all the values in the row; if a row
adds up to 3 then the X's must of won, if a row adds up to 0 then the 0's must of won. You could do
similar checks for the vertical columns and a slightly different check for the diagonals.

There a several uses for 2D arrays. A common use is when wanting to something like an
inventory/weapon system. An example of an inventory set-up could be (this would be put in the
creation event on an object, often a controller object):

31

spell[0,0] = "Dragon's Eye"; //spell name
spell[0,1] = 5; //spell power
spell[0,2] = 430; //spell cost
spell[0,3] = 30; //spell time

spell[1,0] = "Moonstone";
spell[1,1] = 20;
spell[1,2] = 600;
spell[1,3] = 25;

spell[2,0] = "Fae Dust";
spell[2,1] = 3;
spell[2,2] = 210;
spell[2,3] = 5;

The way this is set-up is so the 1st index corresponds to the spell type and the 2nd index corresponds to
a specific characteristic value. Setting up a system like this has massive advantages in terms of flexibility,
it's a lot neater/easier to set-up and it is also easier to read. An example of code you can now use to cast
a spell would be:

other.health -= spell[current_spell,1]; //setting health off other
instance depending on the spell power
money -= spell[current_spell,2]; //subtracting money depending on
spell cost
alarm[0] = spell[current_spell,3]; //setting alarm to end spell
depending on spell time

What this does is it now calls upon the different spell characteristic values set in the 2D array depending
on what a current_spell variable is set to. By using this you can now easily change between spells just by
changing the current_spell variable. For example if current_spell is set to 1 it will now be executing this
code:

other.health -= 20;
money -= 600;
alarm[0] = 25;

As these are the characteristic values you have set in the 2D array for the Moonstone spell. The spell
name isn't being used here it would often be used separately in the draw event by using something like:

draw_text(x,y,"Spell Name: "+spell[current_spell,0]);

32

-Easy array initialization setup

Setting up an array can be a messy and monotonous task if done incorrectly. I will show you good
technique of setting up an array:

inv_num = 0;
inv_item[inv_num] = "item 1"; inv_num += 1;
inv_item[inv_num] = "item 2"; inv_num += 1;
inv_item[inv_num] = "item 3"; inv_num += 1;
inv_item[inv_num] = "item 4"; inv_num += 1;
inv_item[inv_num] = "item 5"; inv_num += 1;

Using this will result the same as the following array assignment:

 inv_item[0] = "item 1";
inv_item[1] = "item 2";
inv_item[2] = "item 3";
inv_item[3] = "item 4";
inv_item[4] = "item 5";

Using the 1st method over the 2nd has several advantages. Firstly the inv_num variable is calculated
automatically, saving you counting and putting it in manually. Secondly it's more customizable, if you
wish to insert an inventory line using the 2nd method you will need to edit all the array indexes, using
the 1st method it can just be inserted straight off. Thirdly it takes less time for you to write, once you
have set up the line:

 inv_item[inv_num] = "item 2"; inv_num += 1;

You can then just copy/paste the line down, leaving:

 inv_item[inv_num] = "item 2"; inv_num += 1;
inv_item[inv_num] = "item 2"; inv_num += 1;
inv_item[inv_num] = "item 2"; inv_num += 1;
inv_item[inv_num] = "item 2"; inv_num += 1;

Then all you have to do is edit the assignment value for each array, whereas with the 2nd method you
need to change the index for each array as well.

TIP
• The array index starts at 0. A lot of people start indexes off at 1, but it is

generally better coding practice to start indexes off for things like this at 0
so it is consistent with other things.

33

If you want to use this set-up with a 2D array, you could do so like this:

 x_ind = 0; y_ind = 0;

inv_item[x_ind, y_ind] = "item 1"; y_ind += 1;
inv_item[x_ind, y_ind] = "item 2"; y_ind += 1;
inv_item[x_ind, y_ind] = "item 3"; y_ind += 1;
x_ind += 1; y_ind = 0;

inv_item[x_ind, y_ind] = "item 4"; y_ind += 1;
inv_item[x_ind, y_ind] = "item 5"; y_ind += 1;
inv_item[x_ind, y_ind] = "item 6"; y_ind += 1;
x_ind += 1; y_ind = 0;

inv_item[x_ind, y_ind] = "item 7"; y_ind += 1;
inv_item[x_ind, y_ind] = "item 8"; y_ind += 1;
inv_item[x_ind, y_ind] = "item 9"; y_ind += 1;
x_ind += 1;

Scripts

A way to think of a script is just like the DnD 'execute a piece of code' action except with a few more
possibilities, another way to think of them is just like a function which you are writing yourself. To create
a new script just add a script and then give it a name. To use it you can then either use the 'Execute
Script' DnD action or you can call it by its name in another script (or the execute a piece of code' action)
followed by (). For example if you make a script and call it set_gravity, then to call this script you can just
use the following code:

set_gravity();

- So what are the advantages of scripts?

Well for starters doing things in scripts can be easier because it saves you trailing through your objects
all the time, it also helps that you can minimize a script window whereas game maker doesn't allow you
to minimize the normal execute code action.

Another advantage is the ability to call it over and over again instead of just once like the execute code
action, this saves you repeatedly writing out the same piece of code. When you call a script the code is
executed inside the instance that calls it, therefore like in the example I'm about to show you, you can
call upon and manipulate local variables to that object and all variables assignments will also be made to
the calling object.

But the main advantage of using scripts is the ability to use arguments and to get a return value from
them.

34

-Arguments

These are like values that you are giving to the script, to use them you have to put a value in-between
the brackets with commas between them, for example:

set_gravity(0.4, 270);

This will then pass the values 0.4 and 270 to the script set_gravity. These values are stored in what are
referred to as arguments, in this case argument0 (arguments start from index 0) is equal to 0.4 and
argument1 is equal to 270. So for example to call these values in the script you can use:

//set_gravity(gravity amount, gravity direction) sets the gravity
gravity = argument0;
gravity_direction = argument1;

This is then setting the gravity to that of argument0 (which we have put as 0.4) and the
gravity_direction to that of argument1 (which we have set to 270). The first line of that is just a
comment, it is often a good idea to comment any scripts you use saying when each argument should be
and what the script does.

Now you have set this script up you can call it with any arguments you want, for example:

set_gravity(3,90);

This will now set the gravity to 3 upwards.

There is another thing to note and that is that arguments can also be used as an array. For example the
previous script could actually have been written like:

//set_gravity(gravity amount, gravity direction) sets the gravity
gravity = argument[0];
gravity_direction = argument[1];

Which would do exactly same thing, it is sometimes useful to be able to call the arguments as an array,
for example when you wish to loop through them.

Something else to be aware of is that you can only give a script a maximum of 16 arguments. Also Game
Maker will automatically assign all 16 arguments a value even if you don't put one in yourself, a value of
0 is given to all arguments that you don't assign at the end of calling a script. This is why (and you should
take note of this) that calling a script is actually quite slow in comparison to executing code inside an
object normally, it is therefore not advised to use scripts for very simple things.

35

-Return

Instead of values you put into a script this is a actually a value that the script gives out to the instance
calling it. For example if you set up a script called multiply:

//multiply() multiplies numbers
var sum;
sum = 4*5;
return sum;

This will calculate the sum as 20 and then it will return the value, so basically this script is going to return
20. Now if you call this from an object using a variable assignment like so:

 value = multiply();

It is going to first execute the script which is going to return 20, this return value will then be assigned to
the variable value. So now the variable value will be equal to 20.

You may of seen something similar to this happening with instance_create()… for example you can use:

 obj = instance_create(x,y,obj_enemy);

instance_create() is just a built-in function, which acts exactly like a script. You give it arguments, in this
case argument0 is x, arugment1 is y, argument2 is the object. Then after game maker has executed it, it
gives you a return value, which is the id of the object it has created. This return value is now stored in
the variable obj for you to use. Note though that not all scripts need to return a value, it is your choice,
and also it is only possible to return 1 value for a script. For example if you want to calculate the x and y
differences of 2 objects and return the values from a script you might try using:

//get_coord_differences(obj1,obj2) calculates x and y differences of
the 2 objects given

return argument0.x-argument1.x;
return argument0.y-argument1.y;

This however will not work. The reason being as soon as a script returns a value the script is exited and
all the code after it is not run, therefore it will only return the differences in the x values, anyway even if
it returned both values how would you be able to use both values at the same time? There are many
ways you get around this problem I will show you 2. The first way is probably the 'purist' way to solve
this problem which is to put the values into a ds_list then return the list id. For example:

//get_coord_differences(obj1,obj2,ds_list index) calculates x and y
differences of the 2 objects and adds them to the given ds_list

ds_list_add(argument2,argument0.x-argument1.x);

 ds_list_add(argument2,argument0.y-argument1.y);

NOTE: I have declared the sum variable using var, this practice should always be made with
variables used only in the script.

36

This now puts the values into a given ds_list which should be created before executing the script, you
can then call the values from the ds_list, an example of doing so:

 var return_list

return_list = ds_list_create();
get_coord_differences(id,other.id,return_list);
x_dif = ds_list_find_value(return_list,0);
y_dif = ds_list_find_value(return_list,1);
ds_list_destroy(return_list);

The second way is to create variables in the script and then call from these variables, for example:

//get_coord_differences(obj1,obj2) calculates x and y differences of
the 2 objects and assigns them to variables to use

return0 = argument0.x-argument1.x;
return1 = argument0.y-argument1.y;

Then an example of calling the script:

 get_coord_differences(id,other.id);
x_dif = return0;
y_dif = return1;

This method is faster than using a ds_list however it involves making new variables so is slightly worse
for memory; you can decide yourself which method you prefer.

Final notes

If you have managed to make it this far then well done, it is a very long guide so you may have to read
back over some of it to recap. What you can learn by just reading is often limited I advise that you try
out and mess with some of the concepts I have just been teaching you, experimentation in programming
is a key part of understanding.

If you have any questions at this point then I advise making a new topic in the Novice & Intermediate
Q&A forum as it will be a lot easier for people to help you there.

Good luck.

37

Appendix A – Syntax Highlighting

When using the Game Maker code editor, you will observe that as you type, the text will change colors,
and some will become bold. This is known as syntax highlighting and it can help you greatly while you
are programming. If your intention is to call a resource such as a sprite, object, or script then you can
catch a mistake should you happen to call it the wrong name in your code because the color will not
change. On the other hand, if you accidently try to create a variable that may already be reserved then
you can also catch that mistake because it will change color. For example, let’s say you are creating an
enemy object, maybe a boss, and it needs a life meter. This will of course, require a variable to hold the
amount of life you enemy holds, so you throw in the code editor:

 health = 100;

Seems like a good name for a variable that holds the amount of health
something has, but wait! It turned blue… That is because health is a built in
variable that ties to the DnD health bar action. Here is a list of the syntax
highlighting you will see while using Game Maker.

Normal Text
Keywords
Comment
Object Name
Room Name
Sprite Name
Sound Name
Background Name
Script Name
Local Variable
Global Variable
Functions
Constants
Paths
Fonts
Timelines

*Note that these are the default colors, these colors can be changed by going
to File>Preferences> and clicking the colors tab.

38

Appendix B – Built In Variables

This is a list of all the built in variables in Game Maker

Global Global (Cont) Local
global: argument
global: argument0
global: argument1
global: argument10
global: argument11
global: argument12
global: argument13
global: argument14
global: argument15
global: argument2
global: argument3
global: argument4
global: argument5
global: argument6
global: argument7
global: argument8
global: argument9
global: argument_relative
global: background_alpha
global: background_blend
global: background_color
global:
background_foreground
global: background_height
global:
background_hspeed
global: background_htiled
global: background_index
global:
background_showcolor
global: background_visible
global: background_vspeed
global: background_vtiled
global: background_width
global: background_x
global: background_xscale
global: background_y
global: background_yscale
global: caption_health
global: caption_lives
global: caption_score
global: current_day
global: current_hour
global: current_minute
global: current_month
global: current_second
global: current_time
global: current_weekday
global: current_year
global: cursor_sprite
global: error_last
global: error_occurred
global: event_action
global: event_number
global: event_object

global: event_type
global: fps
global: game_id
global: health
global: instance_count
global: instance_id
global: keyboard_key
global: keyboard_lastchar
global: keyboard_lastkey
global: keyboard_string
global: lives
global: mouse_button
global: mouse_lastbutton
global: mouse_x
global: mouse_y
global: program_directory
global: room
global: room_caption
global: room_first
global: room_height
global: room_last
global: room_persistent
global: room_speed
global: room_width
global: score
global: secure_mode
global: show_health
global: show_lives
global: show_score
global: temp_directory
global: transition_kind
global: transition_steps
global: view_angle
global: view_current
global: view_enabled
global: view_hborder
global: view_hport
global: view_hspeed
global: view_hview
global: view_object
global: view_vborder
global: view_visible
global: view_vspeed
global: view_wport
global: view_wview
global: view_xport
global: view_xview
global: view_yport
global: view_yview
global: working_directory

local: alarm
local: bbox_bottom
local: bbox_left
local: bbox_right
local: bbox_top
local: depth
local: direction
local: friction
local: gravity
local: gravity_direction
local: hspeed
local: id
local: image_alpha
local: image_angle
local: image_blend
local: image_index
local: image_number
local: image_single
local: image_speed
local: image_xscale
local: image_yscale
local: mask_index
local: object_index
local: path_endaction
local: path_index
local: path_orientation
local: path_position
local: path_positionprevious
local: path_scale
local: path_speed
local: persistent
local: solid
local: speed
local: sprite_height
local: sprite_index
local: sprite_width
local: sprite_xoffset
local: sprite_yoffset
local: timeline_index
local: timeline_position
local: timeline_speed
local: visible
local: vspeed
local: x
local: xprevious
local: xstart
local: y
local: yprevious
local: ystart

39

Credits

flexaplex - Writhing the original version of this guide and posting it on the GMC. The original topic can
be found HERE.

Destron – The PDF version of this guide (what your reading now), minor editing and spelling correction,
added a couple small bits here and there.

The GMC for comments made on the guide

Mark Overmars for creating Game Maker

YoYo Games for continuing Game Maker development.

Where to get help

Stumped? Don’t quite understand something? With Game Makers massive user base there is always
help available!

The original GMC thread can be found HERE
We are always willing to help readers at GM@DM, you can contact us HERE
Fellow users of the GMC always love to lend a hand, you can also try posting your problem HERE**

*Please do not assume that the original author will still support this guide, or have the time to offer help. Ask if they have time first, if not, seek
another method. It’s quite possible, that you could be reading this long after it was published and the author has moved on.

** When posting on the GMC forums, the best way to get a quick and helpful response is to give your post a meaningful subject, post as much
detail as possible including your code, and if possible post what you have tried to fix the problem yourself. The GMC loves to help people who
are stuck, but are always more responsive to those who try to help themselves first!

For more titles in the Destron Media Game Maker Education Series Visit

http://gm.destronmedia.com/?page_id=407

http://gmc.yoyogames.com/index.php?showtopic=424410&st=0�
http://gmc.yoyogames.com/index.php?showtopic=424410&st=0�
http://gm.destronmedia.com/?page_id=137�
http://gmc.yoyogames.com/index.php?showforum=2�
http://gm.destronmedia.com/?page_id=407�

	/Getting Started
	Functions
	Variables
	If / else statements
	Some uses of variables
	With statements
	For loops
	Arrays
	Scripts
	Final notes
	Appendix A – Syntax Highlighting
	Appendix B – Built In Variables
	Credits
	Where to get help

